Search results
Results from the WOW.Com Content Network
In the analysis of data, a correlogram is a chart of correlation statistics. For example, in time series analysis, a plot of the sample autocorrelations versus (the time lags) is an autocorrelogram. If cross-correlation is plotted, the result is called a cross-correlogram.
In EViews, this test is already done after a regression, at "View" → "Residual Diagnostics" → "Serial Correlation LM Test". In Julia, the BreuschGodfreyTest function is available in the HypothesisTests package. [10] In gretl, this test can be obtained via the modtest command, or under the "Test" → "Autocorrelation" menu entry in the GUI ...
In Stata, the command newey produces Newey–West standard errors for coefficients estimated by OLS regression. [13] In MATLAB, the command hac in the Econometrics toolbox produces the Newey–West estimator (among others). [14] In Python, the statsmodels [15] module includes functions for the covariance matrix using Newey–West.
RATS: robusterrors option is available in many of the regression and optimization commands (linreg, nlls, etc.). Stata: robust option applicable in many pseudo-likelihood based procedures. [19] Gretl: the option --robust to several estimation commands (such as ols) in the context of a cross-sectional dataset produces robust standard errors. [20]
That is, the disattenuated correlation estimate is obtained by dividing the correlation between the estimates by the geometric mean of the separation indices of the two sets of estimates. Expressed in terms of classical test theory, the correlation is divided by the geometric mean of the reliability coefficients of two tests.
The correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case, the correlation coefficient is undefined because the variance of Y is zero.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
A correlation function is a function that gives the statistical correlation between random variables, contingent on the spatial or temporal distance between those variables. [1] If one considers the correlation function between random variables representing the same quantity measured at two different points, then this is often referred to as an ...