Search results
Results from the WOW.Com Content Network
A simple magic square game demonstrating nonclassical correlations was introduced by P.K. Aravind [3] based on a series of papers by N. David Mermin [4] [5] and Asher Peres [6] and Adán Cabello [7] [8] that developed simplifying demonstrations of Bell's theorem. The game has been reformulated to demonstrate quantum pseudo-telepathy. [9]
Two contestants compete; each is spotted 100 points to start the game. Players take turns picking squares from a game board of 16. If the player reveals a letter, it is placed on the descrambler board in its proper word, but in the order it was found, and the player is awarded points and a chance to unscramble the squares; consonants are worth 10 points, while vowels are worth 20.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
As a running example, we consider a 10×10 magic square, where we have divided the square into four quarters. The quarter A contains a magic square of numbers from 1 to 25, B a magic square of numbers from 26 to 50, C a magic square of numbers from 51 to 75, and D a magic square of numbers from 76 to 100.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Sallows is an expert on the theory of magic squares [1] and has invented several variations on them, including alphamagic squares [2] [3] and geomagic squares. [4] The latter invention caught the attention of mathematician Peter Cameron who has said that he believes that "an even deeper structure may lie hidden beyond geomagic squares" [5]
Start by creating a (2n+1)-by-(2n+1) square array consisting of n+1 rows of Ls, 1 row of Us, and; n-1 rows of Xs, and then exchange the U in the middle with the L above it. Each letter represents a 2x2 block of numbers in the finished square.