Search results
Results from the WOW.Com Content Network
The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane. By Lindemann–Weierstrass theorem , the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.
Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and ...
In terms of the hyperbolic angle parameter a, the unit hyperbola consists of points ( + ), where j = (0,1). The right branch of the unit hyperbola corresponds to the positive coefficient. In fact, this branch is the image of the exponential map acting on the j-axis.
Hyperbolic may refer to: of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics Hyperbolic geometry, a non-Euclidean geometry; Hyperbolic functions, analogues of ordinary trigonometric functions, defined using the hyperbola; of or pertaining to hyperbole, the use of exaggeration as a rhetorical device or figure ...
The argument of a hyperbolic function is a hyperbolic angle. A mathematical function has one or more arguments in the form of independent variables designated in the definition, which can also contain parameters. The independent variables are mentioned in the list of arguments that the function takes, whereas the parameters are not.
The hyperbolic plane is a plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane.
The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.
Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups. The quotient space H 2 / Γ of the upper half-plane modulo the fundamental group is known as the Fuchsian model of the hyperbolic surface. The Poincaré half plane is also hyperbolic, but is simply ...