Search results
Results from the WOW.Com Content Network
Consider the sum = = where >0 for all N.Since all the terms are positive, the value of S must be greater than the value of the largest term, , and less than the product of the number of terms and the value of the largest term.
Snowflake schema used by example query. The example schema shown to the right is a snowflaked version of the star schema example provided in the star schema article. The following example query is the snowflake schema equivalent of the star schema example code which returns the total number of television units sold by brand and by country for 1997.
Horizontal partitioning splits one or more tables by row, usually within a single instance of a schema and a database server. It may offer an advantage by reducing index size (and thus search effort) provided that there is some obvious, robust, implicit way to identify in which partition a particular row will be found, without first needing to search the index, e.g., the classic example of the ...
List partitioning: a partition is assigned a list of values. If the partitioning key has one of these values, the partition is chosen. For example, all rows where the column Country is either Iceland, Norway, Sweden, Finland or Denmark could build a partition for the Nordic countries.
Let C i (for i between 1 and k) be the sum of subset i in a given partition. Instead of minimizing the objective function max(C i), one can minimize the objective function max(f(C i)), where f is any fixed function. Similarly, one can minimize the objective function sum(f(C i)), or maximize min(f(C i)), or maximize sum(f(C i)).
Given such an instance, construct an instance of Partition in which the input set contains the original set plus two elements: z 1 and z 2, with z 1 = sum(S) and z 2 = 2T. The sum of this input set is sum(S) + z 1 + z 2 = 2 sum(S) + 2T, so the target sum for Partition is sum(S) + T. Suppose there exists a solution S′ to the SubsetSum instance
A Riemann sum of over [,] with partition is defined as = = (), where = and [,]. [1] One might produce different Riemann sums depending on which x i ∗ {\displaystyle x_{i}^{*}} 's are chosen. In the end this will not matter, if the function is Riemann integrable , when the difference or width of the summands Δ x i {\displaystyle \Delta x_{i ...
The grand canonical partition function applies to a grand canonical ensemble, in which the system can exchange both heat and particles with the environment, at fixed temperature, volume, and chemical potential. Other types of partition functions can be defined for different circumstances; see partition function (mathematics) for