Search results
Results from the WOW.Com Content Network
In control theory, a continuous linear time-invariant system (LTI) is exponentially stable if and only if the system has eigenvalues (i.e., the poles of input-to-output systems) with strictly negative real parts (i.e., in the left half of the complex plane). [1]
Other names for linear stability include exponential stability or stability in terms of first approximation. [ 1 ] [ 2 ] If there exists an eigenvalue with zero real part then the question about stability cannot be solved on the basis of the first approximation and we approach the so-called "centre and focus problem".
This is a list of exponential topics, ... Exponential stability; Exponential sum; Exponential time. ... Statistics; Cookie statement; Mobile view;
The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations.
Von Neumann stability analysis is a commonly used procedure for the stability analysis of finite difference schemes as applied to linear partial differential equations. These results do not hold for nonlinear PDEs, where a general, consistent definition of stability is complicated by many properties absent in linear equations.
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Expressing the first exponential as a series will yield another series in positive powers of x − μ which is generally less useful. For one-sided stable distribution, the above series expansion needs to be modified, since q = exp ( − i α π / 2 ) {\displaystyle q=\exp(-i\alpha \pi /2)} and q i α = 1 {\displaystyle qi^{\alpha }=1} .
Exponential service time with a random variable Y for the size of the batch of entities serviced at one time. M X /M Y /1 queue: D: Degenerate distribution: A deterministic or fixed service time. M/D/1 queue: E k: Erlang distribution: An Erlang distribution with k as the shape parameter (i.e., sum of k i.i.d. exponential random variables). G ...