enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Necessity_and_sufficiency

    In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements. For example, in the conditional statement : "If P then Q ", Q is necessary for P , because the truth of Q is guaranteed by the truth of P .

  3. Affirming the consequent - Wikipedia

    en.wikipedia.org/wiki/Affirming_the_consequent

    In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...

  4. Category:Necessity and sufficiency - Wikipedia

    en.wikipedia.org/wiki/Category:Necessity_and...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  5. Possibility theory - Wikipedia

    en.wikipedia.org/wiki/Possibility_theory

    Possibility theory is a mathematical theory for dealing with certain types of uncertainty and is an alternative to probability theory.It uses measures of possibility and necessity between 0 and 1, ranging from impossible to possible and unnecessary to necessary, respectively.

  6. Modal logic - Wikipedia

    en.wikipedia.org/wiki/Modal_logic

    Modal logic is a kind of logic used to represent statements about necessity and possibility.It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation.

  7. If and only if - Wikipedia

    en.wikipedia.org/wiki/If_and_only_if

    The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...

  8. Metamathematics - Wikipedia

    en.wikipedia.org/wiki/Metamathematics

    Begriffsschrift (German for, roughly, "concept-script") is a book on logic by Gottlob Frege, published in 1879, and the formal system set out in that book. Begriffsschrift is usually translated as concept writing or concept notation ; the full title of the book identifies it as "a formula language , modeled on that of arithmetic , of pure ...

  9. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Sufficiency: the solution pair , (,) satisfies the KKT conditions, thus is a Nash equilibrium, and therefore closes the duality gap. Necessity: any solution pair x ∗ , ( μ ∗ , λ ∗ ) {\displaystyle x^{*},(\mu ^{*},\lambda ^{*})} must close the duality gap, thus they must constitute a Nash equilibrium (since neither side could do any ...