enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan form is used to find a normal form of matrices up to conjugacy such that normal matrices make up an algebraic variety of a low fixed degree in the ambient matrix space. Sets of representatives of matrix conjugacy classes for Jordan normal form or rational canonical forms in general do not constitute linear or affine subspaces in the ...

  3. Jordan matrix - Wikipedia

    en.wikipedia.org/wiki/Jordan_matrix

    Let () (that is, a n × n complex matrix) and () be the change of basis matrix to the Jordan normal form of A; that is, A = C −1 JC.Now let f (z) be a holomorphic function on an open set such that ; that is, the spectrum of the matrix is contained inside the domain of holomorphy of f.

  4. Companion matrix - Wikipedia

    en.wikipedia.org/wiki/Companion_matrix

    Rather, the Jordan canonical form of () contains one Jordan block for each distinct root; if the multiplicity of the root is m, then the block is an m × m matrix with on the diagonal and 1 in the entries just above the diagonal. in this case, V becomes a confluent Vandermonde matrix. [2]

  5. Matrix similarity - Wikipedia

    en.wikipedia.org/wiki/Matrix_similarity

    The rational canonical form is determined by the elementary divisors of A; these can be immediately read off from a matrix in Jordan form, but they can also be determined directly for any matrix by computing the Smith normal form, over the ring of polynomials, of the matrix (with polynomial entries) XI n − A (the same one whose determinant ...

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The polynomial p A in an indeterminate X given by evaluation of the determinant det(X I n − A) is called the characteristic polynomial of A. It is a monic polynomial of degree n. Therefore the polynomial equation p A (λ) = 0 has at most n different solutions, that is, eigenvalues of the matrix. [42] They may be complex even if the entries of ...

  7. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    The Frobenius normal form does not need of extending the field of scalars and makes the characteristic polynomial immediately readable on the matrix. The Jordan normal form requires to extend the field of scalar for containing all eigenvalues, and differs from the diagonal form only by some entries that are just above the main diagonal and are ...

  8. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    The Jordan normal form and the Jordan–Chevalley decomposition. Applicable to: square matrix A; Comment: the Jordan normal form generalizes the eigendecomposition to cases where there are repeated eigenvalues and cannot be diagonalized, the Jordan–Chevalley decomposition does this without choosing a basis.

  9. Cayley–Hamilton theorem - Wikipedia

    en.wikipedia.org/wiki/Cayley–Hamilton_theorem

    The Cayley–Hamilton theorem is an immediate consequence of the existence of the Jordan normal form for matrices over algebraically closed fields, see Jordan normal form § Cayley–Hamilton theorem. In this section, direct proofs are presented.