Search results
Results from the WOW.Com Content Network
Tin (1965) [18] described and compared ratio estimators proposed by Beale (1962) [19] and Quenouille (1956) [20] and proposed a modified approach (now referred to as Tin's method). These ratio estimators are commonly used to calculate pollutant loads from sampling of waterways, particularly where flow is measured more frequently than water quality.
Two variables are inversely proportional (also called varying inversely, in inverse variation, in inverse proportion) [2] if each of the variables is directly proportional to the multiplicative inverse (reciprocal) of the other, or equivalently if their product is a constant. [3]
Specific proportions in the bodies of vertebrates (including humans) are often claimed to be in the golden ratio; for example the ratio of successive phalangeal and metacarpal bones (finger bones) has been said to approximate the golden ratio. There is a large variation in the real measures of these elements in specific individuals, however ...
[1] [7] It is sometimes called formula percentage, [1] a phrase that refers to the sum of a set of baker's percentages. [note 1] Baker's percentage expresses a ratio in percentages of each ingredient's weight to the total flour weight: [10] [12] [13]
The ratio of width to height of standard-definition television. In mathematics, a ratio (/ ˈ r eɪ ʃ (i) oʊ /) shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ratio 4:3).
Researchers have used Cohen's h as follows.. Describe the differences in proportions using the rule of thumb criteria set out by Cohen. [1] Namely, h = 0.2 is a "small" difference, h = 0.5 is a "medium" difference, and h = 0.8 is a "large" difference.
In a survey, the proportions of people positively answering some different items can be expressed as percentages. As the total amount is identified as 100, the compositional vector of D components can be defined using only D − 1 components, assuming that the remaining component is the percentage needed for the whole vector to add to 100.
In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.