Search results
Results from the WOW.Com Content Network
These pigments enter a high-energy state upon absorbing a photon which they can release in the form of chemical energy. This can occur via light-driven pumping of ions across a biological membrane (e.g. in the case of the proton pump bacteriorhodopsin) or via excitation and transfer of electrons released by photolysis (e.g. in the photosystems ...
Like plants, the cyanobacteria use water as an electron donor for photosynthesis and therefore liberate oxygen; they also use chlorophyll as a pigment.In addition, most cyanobacteria use phycobiliproteins, water-soluble pigments which occur in the cytoplasm of the chloroplast, to capture light energy and pass it on to the chlorophylls.
Two examples of carotenoids are lycopene and β-carotene. These molecules also absorb light most efficiently in the 400 – 500 nm range. Due to their absorption region, carotenoids appear red and yellow and provide most of the red and yellow colours present in fruits and flowers. The carotenoid molecules also serve a safeguarding function.
All biological pigments selectively absorb certain wavelengths of light while reflecting others. [4] [5] The principal pigments responsible are: Chlorophyll is the primary pigment in plants; it is a chlorin that absorbs blue and red wavelengths of light while reflecting a majority of green. It is the presence and relative abundance of ...
The light-harvesting complex (or antenna complex; LH or LHC) is an array of protein and chlorophyll molecules embedded in the thylakoid membrane of plants and cyanobacteria, which transfer light energy to one chlorophyll a molecule at the reaction center of a photosystem. The antenna pigments are predominantly chlorophyll b, xanthophylls, and ...
Photoreceptor proteins typically consist of a protein attached to a non-protein chromophore (sometimes referred as photopigment, even so photopigment may also refer to the photoreceptor as a whole). The chromophore reacts to light via photoisomerization or photoreduction , thus initiating a change of the receptor protein which triggers a signal ...
The process starts when light is absorbed by two BChl molecules that lie near the periplasmic side of the membrane. This pair of chlorophyll molecules, often called the "special pair", absorbs photons at 870 nm or 960 nm, depending on the species and, thus, is called P870 (for Rhodobacter sphaeroides ) or P960 (for Blastochloris viridis ), with ...
Spectral sensitivity is the relative efficiency of detection, of light or other signal, as a function of the frequency or wavelength of the signal. In visual neuroscience , spectral sensitivity is used to describe the different characteristics of the photopigments in the rod cells and cone cells in the retina of the eye .