enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photosynthetic pigment - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_pigment

    Each pigment absorbs light more efficiently in a different part of the electromagnetic spectrum. Chlorophyll a absorbs well in the ranges of 400–450 nm and at 650–700 nm; chlorophyll b at 450–500 nm and at 600–650 nm. Xanthophyll absorbs well at 400–530 nm.

  3. Photopigment - Wikipedia

    en.wikipedia.org/wiki/Photopigment

    These pigments enter a high-energy state upon absorbing a photon which they can release in the form of chemical energy. This can occur via light-driven pumping of ions across a biological membrane (e.g. in the case of the proton pump bacteriorhodopsin) or via excitation and transfer of electrons released by photolysis (e.g. in the photosystems ...

  4. Photosystem - Wikipedia

    en.wikipedia.org/wiki/Photosystem

    Each photosystem has two main subunits: an antenna complex (a light harvesting complex or LHC) and a reaction center. The antenna complex is where light is captured, while the reaction center is where this light energy is transformed into chemical energy. At the reaction center, there are many polypeptides that are surrounded by pigment proteins.

  5. Absorption (electromagnetic radiation) - Wikipedia

    en.wikipedia.org/wiki/Absorption_(electromagnetic...

    By recording the attenuation of light for various wavelengths, an absorption spectrum can be obtained. In physics, absorption of electromagnetic radiation is how matter (typically electrons bound in atoms) takes up a photon's energy—and so transforms electromagnetic energy into internal energy of the absorber (for example, thermal energy). [1]

  6. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    Electrons within these molecules are promoted to a higher-energy state. This is one of two core processes in photosynthesis, and it occurs with astonishing efficiency (greater than 90%) because, in addition to direct excitation by light at 680 nm, the energy of light first harvested by antenna proteins at other wavelengths in the light ...

  7. Light-harvesting complex - Wikipedia

    en.wikipedia.org/wiki/Light-harvesting_complex

    Two examples of carotenoids are lycopene and β-carotene. These molecules also absorb light most efficiently in the 400 – 500 nm range. Due to their absorption region, carotenoids appear red and yellow and provide most of the red and yellow colours present in fruits and flowers. The carotenoid molecules also serve a safeguarding function.

  8. Emerson effect - Wikipedia

    en.wikipedia.org/wiki/Emerson_effect

    When Emerson exposed green plants to differing wavelengths of light, he noticed that at wavelengths of greater than 680 nm the efficiency of photosynthesis decreased abruptly despite the fact that this is a region of the spectrum where chlorophyll still absorbs light (chlorophyll is the green pigment in plants - it absorbs mainly the red and blue wavelengths from light).

  9. Spectral sensitivity - Wikipedia

    en.wikipedia.org/wiki/Spectral_sensitivity

    Spectral sensitivity is the relative efficiency of detection, of light or other signal, as a function of the frequency or wavelength of the signal. In visual neuroscience , spectral sensitivity is used to describe the different characteristics of the photopigments in the rod cells and cone cells in the retina of the eye .