Search results
Results from the WOW.Com Content Network
In this example a company should prefer product B's risk and payoffs under realistic risk preference coefficients. Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine).
Multiple comparisons arise when a statistical analysis involves multiple simultaneous statistical tests, each of which has a potential to produce a "discovery". A stated confidence level generally applies only to each test considered individually, but often it is desirable to have a confidence level for the whole family of simultaneous tests. [ 4 ]
In MCPs, the alternatives are evaluated over a set of criteria. A criterion is an attribute that incorporates preferential information. Thus, the decision model should have some form of monotonic relationship with respect to the criteria. This kind of information is explicitly introduced (a priory) in multicriteria methods for MCPs.
A sensitivity analysis may reveal surprising insights in multi-criteria decision making (MCDM) studies aimed to select the best alternative among a number of competing alternatives. This is an important task in decision making. In such a setting each alternative is described in terms of a set of evaluative criteria.
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
This means that criteria and preference information can be uncertain, inaccurate or partially missing. Incomplete information is represented in SMAA using suitable probability distributions. The method is based on stochastic simulation by drawing random values for criteria measurements and weights from their corresponding distributions. [1]
Pages in category "Multiple-criteria decision analysis" The following 32 pages are in this category, out of 32 total. This list may not reflect recent changes .
The success of an IR system may be judged by a range of criteria including relevance, speed, user satisfaction, usability, efficiency and reliability. [2] Evaluation measures may be categorised in various ways including offline or online, user-based or system-based and include methods such as observed user behaviour, test collections, precision ...