Search results
Results from the WOW.Com Content Network
Following is a comparison of the growth of cycle 25 versus cycle 24, using the 13-month sunspot averages, beginning with the months of the respective minimums. Numbers in brackets for cycle 25 indicate the minimum possible value for that month, assuming there are no more sunspots between now (Jan 3, 2024) and six months after the end of the ...
Solar cycle 23 lasted 11.6 years, beginning in May 1996 and ending in January 2008. The maximum smoothed sunspot number (monthly number of sunspots averaged over a twelve-month period) observed during the solar cycle was 120.8 (March 2000), and the minimum was 1.7. [29] A total of 805 days had no sunspots during this cycle. [30] [31] [32]
Their number varies according to the approximately 11-year solar cycle. Individual sunspots or groups of sunspots may last anywhere from a few days to a few months, but eventually decay. Sunspots expand and contract as they move across the surface of the Sun, with diameters ranging from 16 km (10 mi) [3] to 160,000 km (100,000 mi). [4]
The sun emits the largest solar flare of this 11-year cycle, as imaged by NASA's Solar Dynamics Observatory on October 3. NASA/SDO NASA says the sun is in the highly active "maximum phase" of its ...
In 2002, Lean et al. [41] stated that while "There is ... growing empirical evidence for the Sun's role in climate change on multiple time scales including the 11-year cycle", "changes in terrestrial proxies of solar activity (such as the 14C and 10Be cosmogenic isotopes and the aa geomagnetic index) can occur in the absence of long-term (i.e ...
Solar maximum is the regular period of greatest solar activity during the Sun's 11-year solar cycle. During solar maximum, large numbers of sunspots appear, and the solar irradiance output grows by about 0.07%. [2] On average, the solar cycle takes about 11 years to go from one solar maximum to the next, with duration observed varying from 9 to ...
At a solar-cycle minimum, the toroidal field is, correspondingly, at minimum strength, sunspots are few in number, and the poloidal field is at its maximum strength. With the rise of the next 11-year sunspot cycle, magnetic energy shifts back from the poloidal to the toroidal field, but with a polarity that is opposite to the previous cycle.
Rudolf Wolf gathered sunspot observations as far back as the 1755–1766 cycle. He established a relative sunspot number formulation (the Wolf or Zürich sunspot number) that became the standard measure. Around 1852, Sabine, Wolf, Gautier and von Lamont independently found a link between the solar cycle and geomagnetic activity. [52]