Search results
Results from the WOW.Com Content Network
Face recognition, classification 2011 [111] Zhao, G. et al. BU-3DFE neutral face, and 6 expressions: anger, happiness, sadness, surprise, disgust, fear (4 levels). 3D images extracted. None. 2500 Images, text Facial expression recognition, classification 2006 [112] Binghamton University: Face Recognition Grand Challenge Dataset
The Facial Recognition Technology (FERET) database is a dataset used for facial recognition system evaluation as part of the Face Recognition Technology (FERET) program.It was first established in 1993 under a collaborative effort between Harry Wechsler at George Mason University and Jonathon Phillips at the Army Research Laboratory in Adelphi, Maryland.
A facial expression database is a collection of images or video clips with facial expressions of a range of emotions. Well-annotated ( emotion -tagged) media content of facial behavior is essential for training, testing, and validation of algorithms for the development of expression recognition systems .
OPPORTUNITY Activity Recognition Dataset Human Activity Recognition from wearable, object, and ambient sensors is a dataset devised to benchmark human activity recognition algorithms. None. 2551 Text Classification 2012 [188] [189] D. Roggen et al. Real World Activity Recognition Dataset Human Activity Recognition from wearable devices.
The Face Recognition Grand Challenge (FRGC) was a project that aimed to promote and advance face recognition technology to support existing face recognition efforts within the U.S. Government. The project ran from May 2004 to March 2006 and was open to face recognition researchers and developers in companies, academia, and research institutions.
Facial recognition works by pinpointing unique dimensions of facial features, which are then rendered as a vector graphic image of the face. Fawkes is a facial image cloaking software created by the SAND (Security, Algorithms, Networking and Data) Laboratory of the University of Chicago . [ 1 ]
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
The origin of facial recognition technology is largely attributed to Woodrow Wilson Bledsoe and his work in the 1960s, when he developed a system to identify faces from a database of thousands of photographs. [6] The FERET program first began as a way to unify a large body of face-recognition technology research under a standard database.