Search results
Results from the WOW.Com Content Network
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):
The left and right order topologies can be used to give counterexamples in general topology. For example, the left or right order topology on a bounded set provides an example of a compact space that is not Hausdorff. The left order topology is the standard topology used for many set-theoretic purposes on a Boolean algebra. [clarification needed]
The superconductor, discovered in 1911, is the first experimentally discovered topologically ordered state; it has Z 2 topological order. [note 1] Although topologically ordered states usually appear in strongly interacting boson/fermion systems, a simple kind of topological order can also appear in free fermion systems.
Thus, any algorithm that derives a correct topological order derives a correct evaluation order. Assume the simple calculator from above once more. Given the equation system "A = B+C; B = 5+D; C=4; D=2;", a correct evaluation order would be (D, C, B, A). However, (C, D, B, A) is a correct evaluation order as well.
Many topological spaces of interest can be triangulated, including every smooth manifold (Cairns and Whitehead). [1]: sec.5.3.2 Simplicial homology is defined by a simple recipe for any abstract simplicial complex. It is a remarkable fact that simplicial homology only depends on the associated topological space.
In mathematics, specifically in order theory and functional analysis, the order topology of an ordered vector space (,) is the finest locally convex topological vector space (TVS) topology on for which every order interval is bounded, where an order interval in is a set of the form [,]:= {:} where and belong to . [1]
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
In the branch of mathematics known as topology, the specialization (or canonical) preorder is a natural preorder on the set of the points of a topological space.For most spaces that are considered in practice, namely for all those that satisfy the T 0 separation axiom, this preorder is even a partial order (called the specialization order).