enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Endergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Endergonic_reaction

    The activation energy for the reaction is typically larger than the overall energy of the exergonic reaction (1). Endergonic reactions are nonspontaneous. The progress of the reaction is shown by the line. The change of Gibbs free energy (ΔG) during an endergonic reaction is a positive value because energy is gained (2).

  3. Bioenergetics - Wikipedia

    en.wikipedia.org/wiki/Bioenergetics

    The entire reaction is usually catabolic. [13] The release of energy (called Gibbs free energy) is negative (i.e. −ΔG) because energy is released from the reactants to the products. An endergonic reaction is an anabolic chemical reaction that consumes energy. [3] It is the opposite of an exergonic reaction.

  4. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    The reaction will only be allowed if the total entropy change of the universe is zero or positive. This is reflected in a negative ΔG, and the reaction is called an exergonic process. If two chemical reactions are coupled, then an otherwise endergonic reaction (one with positive ΔG) can be made to happen.

  5. Exergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Exergonic_reaction

    The change of Gibbs free energy (ΔG) in an exergonic reaction (that takes place at constant pressure and temperature) is negative because energy is lost (2). In chemical thermodynamics, an exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy). [1]

  6. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    This energy barrier is known as activation energy (∆G ≠) and the rate of reaction is dependent on the height of this barrier. A low energy barrier corresponds to a fast reaction and high energy barrier corresponds to a slow reaction. A reaction is in equilibrium when the rate of forward reaction is equal to the rate of reverse reaction.

  7. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The chain of redox reactions driving the flow of electrons through the electron transport chain, from electron donors such as NADH to electron acceptors such as oxygen and hydrogen (protons), is an exergonic process – it releases energy, whereas the synthesis of ATP is an endergonic process, which requires an input of energy.

  8. Glyceraldehyde 3-phosphate dehydrogenase - Wikipedia

    en.wikipedia.org/wiki/Glyceraldehyde_3-phosphate...

    The energy released by this highly exergonic oxidation reaction drives the endergonic second reaction (ΔG°'=+50 kJ/mol (+12kcal/mol)), in which a molecule of inorganic phosphate is transferred to the GAP intermediate to form a product with high phosphoryl-transfer potential: 1,3-bisphosphoglycerate (1,3-BPG).

  9. Exergonic and endergonic reaction - Wikipedia

    en.wikipedia.org/wiki/Exergonic_and_endergonic...

    For exergonic and endergonic reactions, see the separate articles: Endergonic reaction; Exergonic reaction; See also. Exergonic process; Endergonic; Exothermic process;