enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    The imaginary unit or unit imaginary number (i) is a mathematical constant that is a solution to the quadratic equation x 2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers , using addition and multiplication .

  3. Skew-Hermitian matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-Hermitian_matrix

    Skew-Hermitian matrices can be understood as the complex versions of real skew-symmetric matrices, or as the matrix analogue of the purely imaginary numbers. [2] The set of all skew-Hermitian n × n {\displaystyle n\times n} matrices forms the u ( n ) {\displaystyle u(n)} Lie algebra , which corresponds to the Lie group U( n ) .

  4. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    [6] [7] [a] The horizontal axis is generally used to display the real part, with increasing values to the right, and the imaginary part marks the vertical axis, with increasing values upwards. A complex number z, as a point (black) and its position vector (blue). A real number a can be regarded as a complex number a + 0i, whose

  5. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  6. Gell-Mann matrices - Wikipedia

    en.wikipedia.org/wiki/Gell-Mann_matrices

    These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation, so they can generate unitary matrix group elements of SU(3) through exponentiation. [1] These properties were chosen by Gell-Mann because they then naturally generalize the Pauli matrices for SU(2) to SU(3), which formed the basis for Gell-Mann's quark ...

  7. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An imaginary number is the product of a real number and the imaginary unit i, [note 1] which is defined by its property i 2 = −1. [1] [2] The square of an imaginary number bi is −b 2. For example, 5i is an imaginary number, and its square is −25. The number zero is considered to be both real and imaginary. [3]

  8. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y, because the multiplication operator for matrix-to-matrix is not commutative. Moreover, If X is normal and non-singular, then X Y and Y X have the same set of eigenvalues. If X is normal and non-singular, Y is normal, and XY ...

  9. Magma (computer algebra system) - Wikipedia

    en.wikipedia.org/wiki/Magma_(computer_algebra...

    Magma contains asymptotically fast algorithms for all fundamental dense matrix operations, such as Strassen multiplication. Sparse matrices Magma contains the structured Gaussian elimination and Lanczos algorithms for reducing sparse systems which arise in index calculus methods, while Magma uses Markowitz pivoting for several other sparse ...