Search results
Results from the WOW.Com Content Network
An example of a positive Seliwanoff’s test. Seliwanoff’s test is a chemical test which distinguishes between aldose and ketose sugars. If the sugar contains a ketone group, it is a ketose. If a sugar contains an aldehyde group, it is an aldose. This test relies on the principle that, when heated, ketoses are more rapidly dehydrated than ...
Ketosis is a metabolic state characterized by elevated levels of ketone bodies in the blood or urine. Physiological ketosis is a normal response to low glucose availability. . In physiological ketosis, ketones in the blood are elevated above baseline levels, but the body's acid–base homeostasis is maintain
Ketoacidosis is caused by the uncontrolled production of ketone bodies. Usually the production of ketones is carefully controlled by several hormones, most importantly insulin. If the mechanisms that control ketone production fail, ketone levels may become dramatically elevated and cause dangerous changes in physiology such as a metabolic acidosis.
β-hydroxybutyrate (the conjugate base of β-hydroxybutyric acid, drawn above) despite chemically containing a carboxylate group instead of a ketone, is the principal "ketone body" in diabetic ketoacidosis. DKA is common in type 1 diabetes as this form of diabetes is associated with an absolute lack of insulin production by the islets of ...
Ketotic hypoglycemia refers to any circumstance in which low blood glucose is accompanied by ketosis, the presence of ketone bodies (such as beta-hydroxybutyrate) in the blood or urine. This state can be either physiologic or pathologic; physiologic ketotic hypoglycemia is a common cause of hypoglycemia in children, often in response to ...
The ketone group is the double-bonded oxygen. In organic chemistry, a ketose is a monosaccharide containing one ketone (>C=O) group per molecule. [1] [2] The simplest ketose is dihydroxyacetone ((CH 2 OH) 2 C=O), which has only three carbon atoms. It is the only ketose with no optical activity.
The concentration of ketone bodies in blood is maintained around 1 mg/dL. Their excretion in urine is very low and undetectable by routine urine tests (Rothera's test). [18] When the rate of synthesis of ketone bodies exceeds the rate of utilization, their concentration in blood increases; this is known as ketonemia.
Generally, Benedict's test detects the presence of aldehyde groups, alpha-hydroxy-ketones, and hemiacetals, including those that occur in certain ketoses. In example, although the ketose fructose is not strictly a reducing sugar, it is an alpha-hydroxy-ketone which results to a positive test because the base component of Benedict converts it ...