enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Difference quotient - Wikipedia

    en.wikipedia.org/wiki/Difference_quotient

    Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]

  3. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    The simplest method is to use finite difference approximations. A simple two-point estimation is to compute the slope of a nearby secant line through the points (x, f(x)) and (x + h, f(x + h)). [1] Choosing a small number h, h represents a small change in x, and it can be either positive or negative.

  4. Discrete calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_calculus

    The process of finding the difference quotient is called differentiation. Given a function defined at several points of the real line, the difference quotient at that point is a way of encoding the small-scale (i.e., from the point to the next) behavior of the function.

  5. Finite difference - Wikipedia

    en.wikipedia.org/wiki/Finite_difference

    In an analogous way, one can obtain finite difference approximations to higher order derivatives and differential operators. For example, by using the above central difference formula for f ′(x + ⁠ h / 2 ⁠) and f ′(x − ⁠ h / 2 ⁠) and applying a central difference formula for the derivative of f ′ at x, we obtain the central difference approximation of the second derivative of f:

  6. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).

  7. Five-point stencil - Wikipedia

    en.wikipedia.org/wiki/Five-point_stencil

    In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors". It is used to write finite difference approximations to derivatives at grid points. It is an example for numerical differentiation.

  8. Finite difference coefficient - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_coefficient

    For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 ⋯ s N 0 ⋮ ⋱ ⋮ s 1 N − 1 ⋯ s N N − 1 ) ( a 1 ⋮ a N ) = d !

  9. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    The calculus of variations began with the work of Isaac Newton, such as with Newton's minimal resistance problem, which he formulated and solved in 1685, and later published in his Principia in 1687, [2] which was the first problem in the field to be formulated and correctly solved, [2] and was also one of the most difficult problems tackled by variational methods prior to the twentieth century.