enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Domain relational calculus - Wikipedia

    en.wikipedia.org/wiki/Domain_relational_calculus

    This language uses the same operators as tuple calculus, the logical connectives ∧ (and), ∨ (or) and ¬ (not). The existential quantifier (∃) and the universal quantifier (∀) can be used to bind the variables. Its computational expressiveness is equivalent to that of relational algebra. [2]

  3. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula.For instance, the universal quantifier in the first order formula () expresses that everything in the domain satisfies the property denoted by .

  4. Tuple relational calculus - Wikipedia

    en.wikipedia.org/wiki/Tuple_relational_calculus

    Since the calculus is a query language for relational databases we first have to define a relational database. The basic relational building block is the domain (somewhat similar, but not equal to, a data type). A tuple is a finite sequence of attributes, which are ordered pairs of domains and values. A relation is a set of (compatible) tuples ...

  5. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    For example, the first-order formula "if x is a philosopher, then x is a scholar", is a conditional statement with "x is a philosopher" as its hypothesis, and "x is a scholar" as its conclusion, which again needs specification of x in order to have a definite truth value. Quantifiers can be applied to variables in a formula.

  6. Universal quantification - Wikipedia

    en.wikipedia.org/wiki/Universal_quantification

    In symbolic logic, the universal quantifier symbol (a turned "A" in a sans-serif font, Unicode U+2200) is used to indicate universal quantification. It was first used in this way by Gerhard Gentzen in 1935, by analogy with Giuseppe Peano's (turned E) notation for existential quantification and the later use of Peano's notation by Bertrand Russell.

  7. Second-order logic - Wikipedia

    en.wikipedia.org/wiki/Second-order_logic

    For example, if the domain is the set of all real numbers, one can assert in first-order logic the existence of an additive inverse of each real number by writing ∀x ∃y (x + y = 0) but one needs second-order logic to assert the least-upper-bound property for sets of real numbers, which states that every bounded, nonempty set of real numbers ...

  8. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or "(∃x)" [1]). Existential quantification is distinct from universal quantification ("for all"), which asserts that the property or relation holds for all members of the domain.

  9. Conjunctive query - Wikipedia

    en.wikipedia.org/wiki/Conjunctive_Query

    Conjunctive queries without distinguished variables are called boolean conjunctive queries.Conjunctive queries where all variables are distinguished (and no variables are bound) are called equi-join queries, [1] because they are the equivalent, in the relational calculus, of the equi-join queries in the relational algebra (when selecting all columns of the result).