Search results
Results from the WOW.Com Content Network
In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, [1] [2] is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe.
Why does the observable universe have more matter than antimatter? (more unsolved problems in physics) In physical cosmology , leptogenesis is the generic term for hypothetical physical processes that produced an asymmetry between leptons and antileptons in the very early universe , resulting in the present-day dominance of leptons over ...
All the particles that make up the matter around us, such electrons and protons, have antimatter versions which are nearly identical, but with mirrored properties such as the opposite electric charge.
A vacuum is defined as a space with as little energy in it as possible. Despite the name, the vacuum still has quantum fields. A true vacuum is stable because it is at a global minimum of energy, and is commonly assumed to coincide with the physical vacuum state we live in. It is possible that a physical vacuum state is a configuration of ...
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...
The epoch of recombination occurred during a matter dominated era of the universe, so we can approximate () as () (+). Putting these together, we see that the angular diameter distance, or the size of the observable universe for a redshift z r e c ≈ 1100 {\displaystyle z_{rec}\approx 1100} is
Comparison of the evolution of the universe under Alfvén–Klein cosmology and the Big Bang theory. [1]Plasma cosmology is a non-standard cosmology whose central postulate is that the dynamics of ionized gases and plasmas play important, if not dominant, roles in the physics of the universe at interstellar and intergalactic scales.
The physical universe is defined as all of space and time [a] (collectively referred to as spacetime) and their contents. [10] Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.