enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    TI SR-50A, a 1975 calculator with a factorial key (third row, center right) The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]

  3. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    For =, the sum of the factorials of the digits is simply the number of digits in the base 2 representation since ! =! =. A natural number n {\displaystyle n} is a sociable factorion if it is a periodic point for SFD b {\displaystyle \operatorname {SFD} _{b}} , where SFD b k ⁡ ( n ) = n {\displaystyle \operatorname {SFD} _{b}^{k}(n)=n} for a ...

  4. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is a mixed radix numeral system: the i-th digit from the right has base i, which means that the digit must be strictly less than i, and that (taking into account the bases of the less significant digits) its value is to be multiplied by (i − 1)! (its place value).

  5. Digit sum - Wikipedia

    en.wikipedia.org/wiki/Digit_sum

    The concept of a decimal digit sum is closely related to, but not the same as, the digital root, which is the result of repeatedly applying the digit sum operation until the remaining value is only a single digit. The decimal digital root of any non-zero integer will be a number in the range 1 to 9, whereas the digit sum can take any value.

  6. Legendre's formula - Wikipedia

    en.wikipedia.org/wiki/Legendre's_formula

    Since ! is the product of the integers 1 through n, we obtain at least one factor of p in ! for each multiple of p in {,, …,}, of which there are ⌊ ⌋.Each multiple of contributes an additional factor of p, each multiple of contributes yet another factor of p, etc. Adding up the number of these factors gives the infinite sum for (!

  7. Digital root - Wikipedia

    en.wikipedia.org/wiki/Digital_root

    The digital root (also repeated digital sum) of a natural number in a given radix is the (single digit) value obtained by an iterative process of summing digits, on each iteration using the result from the previous iteration to compute a digit sum. The process continues until a single-digit number is reached.

  8. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    An alternative version uses the fact that the Poisson distribution converges to a normal distribution by the Central Limit Theorem. [5]Since the Poisson distribution with parameter converges to a normal distribution with mean and variance , their density functions will be approximately the same:

  9. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.