Search results
Results from the WOW.Com Content Network
A vector database, vector store or vector search engine is a database that can store vectors (fixed-length lists of numbers) along with other data items. Vector databases typically implement one or more Approximate Nearest Neighbor algorithms, [1] [2] [3] so that one can search the database with a query vector to retrieve the closest matching database records.
Some authors regard semantic search as a set of techniques for retrieving knowledge from richly structured data sources like ontologies and XML as found on the Semantic Web. [2] Such technologies enable the formal articulation of domain knowledge at a high level of expressiveness and could enable the user to specify their intent in more detail ...
Candidate documents from the corpus can be retrieved and ranked using a variety of methods. Relevance rankings of documents in a keyword search can be calculated, using the assumptions of document similarities theory, by comparing the deviation of angles between each document vector and the original query vector where the query is represented as a vector with same dimension as the vectors that ...
When Pinecone announced a vector database at the beginning of last year, it was building something that was specifically designed for machine learning and aimed at data scientists. It turns out ...
A semantic data model (SDM) is a high-level semantics-based database description and structuring formalism (database model) for databases. This database model is designed to capture more of the meaning of an application environment than is possible with contemporary database models.
Despite the graph databases' advantages and recent popularity over [citation needed] relational databases, it is recommended the graph model itself should not be the sole reason to replace an existing relational database. A graph database may become relevant if there is an evidence for performance improvement by orders of magnitude and lower ...
In addition to our best in class vector database, we are taking a distinct approach offering customers an efficient way to create, store and search vector embeddings beyond those provided by point ...
In recent years, sentence embedding has seen a growing level of interest due to its applications in natural language queryable knowledge bases through the usage of vector indexing for semantic search. LangChain for instance utilizes sentence transformers for purposes of indexing documents. In particular, an indexing is generated by generating ...