Search results
Results from the WOW.Com Content Network
Meaning SI unit of measure alpha: alpha particle: angular acceleration: radian per second squared (rad/s 2) fine-structure constant: unitless beta: velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian
In statistics, a circumflex (ˆ), called a "hat", is used to denote an estimator or an estimated value. [1] For example, in the context of errors and residuals , the "hat" over the letter ε ^ {\displaystyle {\hat {\varepsilon }}} indicates an observable estimate (the residuals) of an unobservable quantity called ε {\displaystyle \varepsilon ...
A branch of physics that studies atoms as isolated systems of electrons and an atomic nucleus. Compare nuclear physics. atomic structure atomic weight (A) The sum total of protons (or electrons) and neutrons within an atom. audio frequency A periodic vibration whose frequency is in the band audible to the average human, the human hearing range.
the population mean or expected value in probability and statistics; a measure in measure theory; micro-, an SI prefix denoting 10 −6 (one millionth) Micrometre or micron (retired in 1967 as a standalone symbol, replaced by "μm" using the standard SI meaning) the coefficient of friction in physics; the service rate in queueing theory
For the case of one particle in one spatial dimension, the definition is: ^ = where ħ is the reduced Planck constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative (denoted by /) is used instead of a total derivative (d/dx) since the wave function is also a function of time. The "hat" indicates an operator.
The simplest Feynman diagram for beta decay. It contains a charged current interaction at each vertex. Charged current interactions are the most easily detected class of weak interactions. The weak force is best known for mediating nuclear decay. It has very short range, but is the only force (apart from gravity) to interact with neutrinos.
In nuclear and materials physics, stopping power is the retarding force acting on charged particles, typically alpha and beta particles, due to interaction with matter, resulting in loss of particle kinetic energy. [1] [2] Stopping power is also interpreted as the rate at which a material absorbs the kinetic energy of a charged particle.
This implies that the smaller the beam size at the interaction point, the faster the rise of the beta function (and thus the beam size) when going away from the interaction point. In practice, the aperture of the beam line elements (e.g. focusing magnets) around the interaction point limit how small beta star can be made.