Search results
Results from the WOW.Com Content Network
In the Oil and Gas, Petrochemical and Oil Refining industries, liquid-gas coalescers are widely used to remove water and hydrocarbon liquids to less than 0.011 mW (plus particulate matter to less than 0.3 μm in size) from natural gas to ensure natural gas quality and protect downstream equipment such as compressors, gas turbines, amine or ...
At standard conditions of pressure and temperature, the droplets of liquid hydrocarbon may have a density 400 to 1,600 times that of natural gas. However, as the operating pressure and temperature increase, the difference in density decreases. At an operating pressure of 800 psig, the liquid hydrocarbon may be only 6 to 10 times as dense as the ...
Peerless Pump was acquired by FMC Corp. in 1932 and continued to assemble, sell and service pumps out of the Fresno facility. [5] In 1976 FMC Corp. sold Peerless Pump to Indian Head. In 2007, Peerless became a wholly owned subsidiary company of the Grundfos group of Denmark. By that time most operations had been consolidated to other locations.
Higher pressure peristaltic hose pumps which can typically operate against up to 16 bar (230 psi) in continuous service, use shoes (rollers only used on low-pressure types) and have casings filled with lubricant to prevent abrasion of the exterior of the pump tube and to aid in the dissipation of heat, and use reinforced tubes, often called ...
Single-stage vacuum pumps typically produce vacuum to 35 torr (mm Hg) or 47 millibars (4.7 kPa), and two-stage pumps can produce vacuum to 25 torr, assuming air is being pumped and the ring-liquid is water at 15 °C (59 °F) or less. Dry air and 15 °C sealant-water temperature is the standard performance basis, which most manufacturers use for ...
The company's brand name was Peerless. The main building was 334 ft long and 3 stories in height, and had a 34 ft cupola. In January 1891 its total monthly payroll amounted to over 10,000 US dollars ($239500 in 2010 dollars) and employed 162 people. [2]
A demister is a device often fitted to vapor–liquid separator vessels to enhance the removal of liquid droplets entrained in a vapor stream. Demisters may be a mesh-type coalescer, vane pack or other structure intended to aggregate the mist into droplets that are heavy enough to separate from the vapor stream. [1]
The oil in the water coalesces on the underside of the plate eventually forming droplets before coalescing into liquid oil which floats off the plates and accumulates at the top of the chamber. The oil accumulating at the top is then transferred to waste oil tank on the vessel where it is later discharged to a treatment facility ashore.