enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Theil–Sen estimator - Wikipedia

    en.wikipedia.org/wiki/Theil–Sen_estimator

    The fit line is then the line y = mx + b with coefficients m and b in slope–intercept form. [12] As Sen observed, this choice of slope makes the Kendall tau rank correlation coefficient become approximately zero, when it is used to compare the values x i with their associated residuals y i − mx i − b. Intuitively, this suggests that how ...

  3. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/.../Pearson_correlation_coefficient

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  4. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    Deming regression (total least squares) also finds a line that fits a set of two-dimensional sample points, but (unlike ordinary least squares, least absolute deviations, and median slope regression) it is not really an instance of simple linear regression, because it does not separate the coordinates into one dependent and one independent ...

  5. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    In simple linear regression, p=1, and the coefficient is known as regression slope. Statistical estimation and inference in linear regression focuses on β . The elements of this parameter vector are interpreted as the partial derivatives of the dependent variable with respect to the various independent variables.

  6. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    In linear regression, the model specification is that the dependent variable, is a linear combination of the parameters (but need not be linear in the independent variables). For example, in simple linear regression for modeling n {\displaystyle n} data points there is one independent variable: x i {\displaystyle x_{i}} , and two parameters, β ...

  7. Regression dilution - Wikipedia

    en.wikipedia.org/wiki/Regression_dilution

    Regression dilution, also known as regression attenuation, is the biasing of the linear regression slope towards zero (the underestimation of its absolute value), caused by errors in the independent variable. Consider fitting a straight line for the relationship of an outcome variable y to a predictor variable x, and estimating the slope of the ...

  8. Correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Correlation_coefficient

    A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution. [citation needed]

  9. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.