enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mean squared prediction error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_prediction_error

    If the increase in the MSPE out of sample compared to in sample is relatively slight, that results in the model being viewed favorably. And if two models are to be compared, the one with the lower MSPE over the n – q out-of-sample data points is viewed more favorably, regardless of the models’ relative in-sample performances. The out-of ...

  3. Cochran–Armitage test for trend - Wikipedia

    en.wikipedia.org/wiki/Cochran–Armitage_test_for...

    where R 1 = N 11 + N 12 + N 13, and C 1 = N 11 + N 21, etc. . The trend test statistic is = (), where the t i are weights, and the difference N 1i R 2 −N 2i R 1 can be seen as the difference between N 1i and N 2i after reweighting the rows to have the same total.

  4. Youden's J statistic - Wikipedia

    en.wikipedia.org/wiki/Youden's_J_statistic

    Youden's J statistic is = + = + with the two right-hand quantities being sensitivity and specificity.Thus the expanded formula is: = + + + = (+) (+) In this equation, TP is the number of true positives, TN the number of true negatives, FP the number of false positives and FN the number of false negatives.

  5. Hosmer–Lemeshow test - Wikipedia

    en.wikipedia.org/wiki/Hosmer–Lemeshow_test

    6. Calculate the p-value Compare the computed Hosmer–Lemeshow statistic to a chi-squared distribution with Q − 2 degrees of freedom to calculate the p-value. There are Q = 10 groups in the caffeine example, giving 10 – 2 = 8 degrees of freedom. The p-value for a chi-squared statistic of 17.103 with df = 8 is p = 0.029. The p-value is ...

  6. Leverage (statistics) - Wikipedia

    en.wikipedia.org/wiki/Leverage_(statistics)

    In statistics and in particular in regression analysis, leverage is a measure of how far away the independent variable values of an observation are from those of the other observations. High-leverage points , if any, are outliers with respect to the independent variables .

  7. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.

  8. G-test - Wikipedia

    en.wikipedia.org/wiki/G-test

    Spreadsheets, web-page calculators, and SAS shouldn't have any problem doing an exact test on a sample size of 1 000 . — John H. McDonald [ 2 ] G -tests have been recommended at least since the 1981 edition of Biometry , a statistics textbook by Robert R. Sokal and F. James Rohlf .

  9. Phi coefficient - Wikipedia

    en.wikipedia.org/wiki/Phi_coefficient

    In statistics, the phi coefficient (or mean square contingency coefficient and denoted by φ or r φ) is a measure of association for two binary variables.. In machine learning, it is known as the Matthews correlation coefficient (MCC) and used as a measure of the quality of binary (two-class) classifications, introduced by biochemist Brian W. Matthews in 1975.