Search results
Results from the WOW.Com Content Network
Earth cutaway from core to exosphere Geothermal drill machine in Wisconsin, USA. Temperature within Earth increases with depth. Highly viscous or partially molten rock at temperatures between 650 and 1,200 °C (1,200 and 2,200 °F) are found at the margins of tectonic plates, increasing the geothermal gradient in the vicinity, but only the outer core is postulated to exist in a molten or fluid ...
The Earth's average surface absolute temperature for the 1961–1990 period has been derived by spatial interpolation of average observed near-surface air temperatures from over the land, oceans and sea ice regions, with a best estimate of 14 °C (57.2 °F). [44]
Graph showing ocean temperature versus depth on the vertical axis. The graph shows several thermoclines (or thermal layers) based on seasons and latitude. The temperature at zero depth is the sea surface temperature. The ocean temperature plays a crucial role in the global climate system, ocean currents and for marine habitats.
The temperature is nearly constant after 1500 meters depth. A thermocline (also known as the thermal layer or the metalimnion in lakes) is a distinct layer based on temperature within a large body of fluid (e.g. water , as in an ocean or lake; or air, e.g. an atmosphere ) with a high gradient of distinct temperature differences associated with ...
The geologic temperature record are changes in Earth's environment as determined from geologic evidence on multi-million to billion (10 9) year time scales. The study of past temperatures provides an important paleoenvironmental insight because it is a component of the climate and oceanography of the time.
The temperature of the ocean at depth lags the Earth's atmosphere temperature by 15 days per 10 metres (33 ft), which means for locations like the Aral Sea, temperatures near its bottom reach a maximum in December and a minimum in May and June. [10]
For premium support please call: 800-290-4726 more ways to reach us
The temperature of the crust increases with depth, [2] reaching values typically in the range from about 700 °C (1,292 °F) to 1,600 °C (2,910 °F) at the boundary with the underlying mantle. The temperature increases by as much as 30 °C (54 °F) for every kilometer locally in the upper part of the crust. [3]