enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK. Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  3. Chemical shift - Wikipedia

    en.wikipedia.org/wiki/Chemical_shift

    Chemical shift δ is usually expressed in parts per million (ppm) by frequency, because it is calculated from [5] =, where ν sample is the absolute resonance frequency of the sample, and ν ref is the absolute resonance frequency of a standard reference compound, measured in the same applied magnetic field B 0.

  4. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...

  5. List of conversion factors - Wikipedia

    en.wikipedia.org/wiki/List_of_conversion_factors

    The difference in electric potential across two points along a conducting wire carrying one ampere of constant current when the power dissipated between the points equals one watt. [ 32 ] = 1 V = 1 W/A = 1 kg⋅m 2 /(A⋅s 3 ) = 1 J/C

  6. Spectral line shape - Wikipedia

    en.wikipedia.org/wiki/Spectral_line_shape

    Since, in FT-NMR, the measurements are made in the time domain division of the data by an exponential is equivalent to deconvolution in the frequency domain. A suitable choice of exponential results in a reduction of the half-width of a line in the frequency domain. This technique has been rendered all but obsolete by advances in NMR technology ...

  7. Fourier-transform spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fourier-transform_spectroscopy

    The peak at the center is the ZPD position ("zero path difference"): Here, all the light passes through the interferometer because its two arms have equal length. The method of Fourier-transform spectroscopy can also be used for absorption spectroscopy. The primary example is "FTIR Spectroscopy", a common technique in chemistry.

  8. Solid-state nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Solid-state_nuclear...

    Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...

  9. Fluorine-19 nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorine-19_nuclear...

    An investigation of the factors influencing the chemical shift in fluorine NMR spectroscopy revealed the solvent to have the largest effect (Δδ = ±2 ppm or more). [5] A solvent-specific reference table with 5 internal reference compounds has been prepared ( CFCl 3 , C 6 H 5 F , PhCF 3 , C 6 F 6 and CF 3 CO 2 H ) to allow reproducible ...