Search results
Results from the WOW.Com Content Network
Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...
A bacterial initiation factor (IF) is a protein that stabilizes the initiation complex for polypeptide translation. Translation initiation is essential to protein synthesis and regulates mRNA translation fidelity and efficiency in bacteria. [1] The 30S ribosomal subunit, initiator tRNA, and mRNA form an initiation complex for elongation. [2]
Thus translation and transcription are parallel processes. Bacterial mRNA are usually polycistronic and contain multiple ribosome binding sites. Translation initiation is the most highly regulated step of protein synthesis in prokaryotes. [5] The rate of translation depends on two factors: the rate at which a ribosome is recruited to the RBS
The process of amino acid building to create protein in translation is a subject of various physic models for a long time starting from the first detailed kinetic models such as [26] or others taking into account stochastic aspects of translation and using computer simulations. Many chemical kinetics-based models of protein synthesis have been ...
Bacterial initiation factor-2 is a bacterial initiation factor. [1] IF2 binds to an initiator tRNA and controls the entry of tRNA onto the ribosome. IF2, bound to GTP, binds to the 30S P site. After associating with the 30S subunit, fMet-tRNA f binds to the IF2 then IF2 transfers the tRNA into the partial P site.
Elongation is the most rapid step in translation. [3] In bacteria, it proceeds at a rate of 15 to 20 amino acids added per second (about 45-60 nucleotides per second). [citation needed] In eukaryotes the rate is about two amino acids per second (about 6 nucleotides read per second).
Bacterial transcription is the process in which a segment of bacterial DNA is copied into a newly synthesized strand of messenger RNA (mRNA) with use of the enzyme RNA polymerase. The process occurs in three main steps: initiation, elongation, and termination; and the result is a strand of mRNA that is complementary to a single strand of DNA.
Degradation of prokaryotic mRNAs is accelerated by loss of coupled translation due to increased availability of target sites of RNase E. [6] It has also been suggested that coupling of transcription with translation is an important mechanism of preventing formation of deleterious R-loops . [ 7 ]