Search results
Results from the WOW.Com Content Network
Super PI finishing a calculation of 1,048,576, or 2 20 digits of pi. Super PI is a computer program that calculates pi to a specified number of digits after the decimal point—up to a maximum of 32 million. It uses Gauss–Legendre algorithm and is a Windows port of the program used by Yasumasa Kanada in 1995 to compute pi to 2 32 digits.
PARI is a C library, allowing for fast computations, and which can be called from a high-level language application (for instance, written in C, C++, Pascal, Fortran, Perl, or Python). gp is an easy-to-use interactive command line interface giving access to the PARI functions.
It was used in the world record calculations of 2.7 trillion digits of π in December 2009, [3] 10 trillion digits in October 2011, [4] [5] 22.4 trillion digits in November 2016, [6] 31.4 trillion digits in September 2018–January 2019, [7] 50 trillion digits on January 29, 2020, [8] 62.8 trillion digits on August 14, 2021, [9] 100 trillion ...
Super PI by Kanada Laboratory [101] in the University of Tokyo is the program for Microsoft Windows for runs from 16,000 to 33,550,000 digits. It can compute one million digits in 40 minutes, two million digits in 90 minutes and four million digits in 220 minutes on a Pentium 90 MHz.
Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.
This does not compute the nth decimal digit of π (i.e., in base 10). [3] But another formula discovered by Plouffe in 2022 allows extracting the nth digit of π in decimal. [4] BBP and BBP-inspired algorithms have been used in projects such as PiHex [5] for calculating many digits of π using distributed computing. The existence of this ...
the use of simple arithmetic constants, e.g., in expressions such as circumference = 2 * Math.PI * radius, [1] or for calculating the discriminant of a quadratic equation as d = b^2 − 4*a*c; the use of powers of 10 to convert metric values (e.g. between grams and kilograms) or to calculate percentage and per mille values
For floating-point arithmetic, the mantissa was restricted to a hundred digits or fewer, and the exponent was restricted to two digits only. The largest memory supplied offered 60 000 digits, however Fortran compilers for the 1620 settled on fixed sizes such as 10, though it could be specified on a control card if the default was not satisfactory.