Search results
Results from the WOW.Com Content Network
In time series analysis used in statistics and econometrics, autoregressive integrated moving average (ARIMA) and seasonal ARIMA (SARIMA) models are generalizations of the autoregressive moving average (ARMA) model to non-stationary series and periodic variation, respectively.
Autoregressive integrated moving average (ARIMA) models non-stationary time series (that is, whose mean changes over time). Autoregressive conditional heteroskedasticity (ARCH) models time series where the variance changes. Seasonal ARIMA (SARIMA or periodic ARMA) models periodic variation.
Parameter estimation using computation algorithms to arrive at coefficients that best fit the selected ARIMA model. The most common methods use maximum likelihood estimation or non-linear least-squares estimation. Statistical model checking by testing whether the estimated model conforms to the specifications of a stationary univariate process ...
Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which ...
Non-linear least squares. Two-stage least squares, three-stage least squares, and seemingly unrelated regressions. Non-linear systems estimation. Generalized Method of Moments. Maximum likelihood estimation. Simultaneous equation systems, large econometric models. ARIMA (autoregressive, integrated moving average) and transfer function models.
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.
In statistics, autoregressive fractionally integrated moving average models are time series models that generalize ARIMA (autoregressive integrated moving average) models by allowing non-integer values of the differencing parameter.
If the linear model is applicable, a scatterplot of residuals plotted against the independent variable should be random about zero with no trend to the residuals. [5] If the data exhibit a trend, the regression model is likely incorrect; for example, the true function may be a quadratic or higher order polynomial.