Search results
Results from the WOW.Com Content Network
For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.
Benson group-increment theory (BGIT), group-increment theory, or Benson group additivity uses the experimentally calculated heat of formation for individual groups of atoms to calculate the entire heat of formation for a molecule under investigation. This can be a quick and convenient way to determine theoretical heats of formation without ...
The enthalpy of formation of one mole of ethane gas refers to the reaction 2 C (graphite) + 3 H 2 (g) → C 2 H 6 (g). Standard enthalpy of hydrogenation is defined as the enthalpy change observed when one mole of an unsaturated compound reacts with an excess of hydrogen to become fully saturated.
Low heat values are calculated from high heat value test data. They may also be calculated as the difference between the heat of formation ΔH ⦵ f of the products and reactants (though this approach is somewhat artificial since most heats of formation are typically calculated from measured heats of combustion).. [1]
Heats of formation of unstable intermediates like CO (g) and NO (g). Heat changes in phase transitions and allotropic transitions. Lattice energies of ionic substances by constructing Born–Haber cycles if the electron affinity to form the anion is known, or; Electron affinities using a Born–Haber cycle with a theoretical lattice energy.
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process.
Heat of formation group additivity methods in thermochemistry enable the calculation and prediction of heat of formation of organic compounds based on additivity. This method was pioneered by S. W. Benson. [1]
Miedema's model is a semi-empirical approach for estimating the heat of formation of solid or liquid metal alloys and compounds in the framework of thermodynamic calculations for metals and minerals. [1]