Search results
Results from the WOW.Com Content Network
algorithm Gauss–Seidel method is inputs: A, b output: φ Choose an initial guess φ to the solution repeat until convergence for i from 1 until n do σ ← 0 for j from 1 until n do if j ≠ i then σ ← σ + a ij φ j end if end (j-loop) φ i ← (b i − σ) / a ii end (i-loop) check if convergence is reached end (repeat)
The Gauss-Seidel, the Jacobi variants and transmission line modelling, TLM. The names of the first two methods are derived from the structural similarities to the numerical methods by the same name. The reason is that the Jacobi method is easy to convert into an equivalent parallel algorithm while there are difficulties to do so for the Gauss ...
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as Voltage, voltage angles, real power and reactive power.
The slack bus is crucial to a load flow problem since it will account for transmission line losses. In a load flow problem, conservation of energy results in the total generation equaling to the sum of the loads. However, there still would be a discrepancy in these quantities due to line losses, which are dependent on line current.
In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process.
The Holomorphic Embedding Load-flow Method (HELM) [note 1] is a solution method for the power-flow equations of electrical power systems. Its main features are that it is direct (that is, non-iterative) and that it mathematically guarantees a consistent selection of the correct operative branch of the multivalued problem, also signalling the condition of voltage collapse when there is no solution.
If Scarborough criterion is not satisfied then Gauss–Seidel method iterative procedure is not guaranteed to converge a solution. This criterion is a sufficient condition, [3] not a necessary one. If this criterion is satisfied then it means equation will be converged by at least one iterative method. The Scarborough criterion is used as a ...
What links here; Related changes; Upload file; Special pages; Permanent link; Page information; Cite this page; Get shortened URL; Download QR code