Search results
Results from the WOW.Com Content Network
The insulin transduction pathway is a biochemical pathway by which insulin increases the uptake of glucose into fat and muscle cells and reduces the synthesis of glucose in the liver and hence is involved in maintaining glucose homeostasis. This pathway is also influenced by fed versus fasting states, stress levels, and a variety of other ...
The insulin receptor (IR) is a transmembrane receptor that is activated by insulin, IGF-I, IGF-II and belongs to the large class of receptor tyrosine kinase. [5] Metabolically, the insulin receptor plays a key role in the regulation of glucose homeostasis; a functional process that under degenerate conditions may result in a range of clinical manifestations including diabetes and cancer.
IRS-1 protein is known to be involved in various types of cancer, including colorectal, [37] lung, [38] prostate and breast cancer. [39] IRS-1 integrates signalling from insulin receptor (InsR), insulin-like growth factor-1 receptor (IGF1R) and many other cytokine receptors and is elevated in β-catenin induced cells.
The insulin signal transduction pathway begins when insulin binds to the insulin receptor proteins. Once the transduction pathway is completed, the GLUT-4 storage vesicles becomes one with the cellular membrane. As a result, the GLUT-4 protein channels become embedded into the membrane, allowing glucose to be transported into the cell.
Proinsulin is synthesized on membrane associated ribosomes found on the rough endoplasmic reticulum, where it is folded and its disulfide bonds are oxidized. It is then transported to the Golgi apparatus where it is packaged into secretory vesicles, and where it is processed by a series of proteases to form mature insulin.
A single protein (monomer) of human insulin is composed of 51 amino acids, and has a molecular mass of 5808 Da. The molecular formula of human insulin is C 257 H 383 N 65 O 77 S 6. [45] It is a combination of two peptide chains named an A-chain and a B-chain, which are linked together by two disulfide bonds. The A-chain is composed of 21 amino ...
Beta cells (β-cells) are specialized endocrine cells located within the pancreatic islets of Langerhans responsible for the production and release of insulin and amylin. [1] Constituting ~50–70% of cells in human islets, beta cells play a vital role in maintaining blood glucose levels. [2] Problems with beta cells can lead to disorders such ...
Beta cells release insulin in response to rising levels of glucose. Insulin enables many types of cells to import and use glucose, and signals the liver to synthesize glycogen. Alpha cells produce less glucagon in response to rising glucose levels, and more glucagon if blood glucose is low. Glucagon serves as a signal to the liver to break down ...