enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Parity-check matrix - Wikipedia

    en.wikipedia.org/wiki/Parity-check_matrix

    Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]

  3. Binary Goppa code - Wikipedia

    en.wikipedia.org/wiki/Binary_Goppa_code

    For practical purposes, parity-check matrix of a binary Goppa code is usually converted to a more computer-friendly binary form by a trace construction, that converts the -by-matrix over () to a -by-binary matrix by writing polynomial coefficients of () elements on successive rows.

  4. Expander code - Wikipedia

    en.wikipedia.org/wiki/Expander_code

    In coding theory, an expander code is a [,] linear block code whose parity check matrix is the adjacency matrix of a bipartite expander graph.These codes have good relative distance (), where and are properties of the expander graph as defined later, rate (), and decodability (algorithms of running time () exist).

  5. Multidimensional parity-check code - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_parity...

    A multidimensional parity-check code (MDPC) is a type of error-correcting code that generalizes two-dimensional parity checks to higher dimensions. It was developed as an extension of simple parity check methods used in magnetic recording systems and radiation-hardened memory designs .

  6. Tanner graph - Wikipedia

    en.wikipedia.org/wiki/Tanner_graph

    For linear block codes, the subcode nodes denote rows of the parity-check matrix H. The digit nodes represent the columns of the matrix H. The digit nodes represent the columns of the matrix H. An edge connects a subcode node to a digit node if a nonzero entry exists in the intersection of the corresponding row and column.

  7. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    The parity-check matrix of a Hamming code is constructed by listing all columns of length r that are non-zero, which means that the dual code of the Hamming code is the shortened Hadamard code, also known as a Simplex code. The parity-check matrix has the property that any two columns are pairwise linearly independent.

  8. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    The parity bit may be used within another constituent code. In an example using the DVB-S2 rate 2/3 code the encoded block size is 64800 symbols (N=64800) with 43200 data bits (K=43200) and 21600 parity bits (M=21600). Each constituent code (check node) encodes 16 data bits except for the first parity bit which encodes 8 data bits.

  9. Ternary Golay code - Wikipedia

    en.wikipedia.org/wiki/Ternary_Golay_code

    The ternary Golay code consists of 3 6 = 729 codewords. Its parity check matrix is [].Any two different codewords differ in at least 5 positions. Every ternary word of length 11 has a Hamming distance of at most 2 from exactly one codeword.