enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Range ambiguity resolution - Wikipedia

    en.wikipedia.org/wiki/Range_ambiguity_resolution

    Range ambiguity resolution is a technique used with medium pulse-repetition frequency (PRF) radar to obtain range information for distances that exceed the distance between transmit pulses. This signal processing technique is required with pulse-Doppler radar .

  3. Frequency ambiguity resolution - Wikipedia

    en.wikipedia.org/wiki/Frequency_ambiguity_resolution

    Radial velocity aliasing occurs when reflections arrive from reflectors moving fast enough for the Doppler frequency to exceed the pulse repetition frequency (PRF). Frequency ambiguity resolution is required to obtain the true radial velocity when the measurements is made using a system where the following inequality is true.

  4. Space-time adaptive processing - Wikipedia

    en.wikipedia.org/wiki/Space-time_adaptive_processing

    For each antenna, a down conversion and analog-to-digital conversion step is typically completed. Then, a 1-D FIR filter with PRI length delay elements is used for each steered antenna channel. The lexicographically ordered weights W 1 {\displaystyle W_{1}} to W N M {\displaystyle W_{NM}} are the degrees of freedom to be solved in the STAP problem.

  5. Pulse-Doppler signal processing - Wikipedia

    en.wikipedia.org/wiki/Pulse-Doppler_signal...

    Pulse Doppler relies on medium pulse repetition frequency (PRF) from about 3 kHz to 30 kHz. Each transmit pulse is separated by 5 km to 50 km distance. Range and speed of the target are folded by a modulo operation produced by the sampling process. True range is found using the ambiguity resolution process. Ambiguity resolution process explanation

  6. Ambiguity function - Wikipedia

    en.wikipedia.org/wiki/Ambiguity_function

    In pulsed radar and sonar signal processing, an ambiguity function is a two-dimensional function of propagation delay and Doppler frequency, (,).It represents the distortion of a returned pulse due to the receiver matched filter [1] (commonly, but not exclusively, used in pulse compression radar) of the return from a moving target.

  7. Imaging radar - Wikipedia

    en.wikipedia.org/wiki/Imaging_radar

    SARs produce a two-dimensional (2-D) image. One dimension in the image is called range and is a measure of the "line-of-sight" distance from the radar to the object. Range is determined by measuring the time from transmission of a pulse to receiving the echo from a target. Also, range resolution is determined by the transmitted pulse width.

  8. Radar tracker - Wikipedia

    en.wikipedia.org/wiki/Radar_tracker

    In this step of the processing, the radar tracker seeks to determine which plots should be used to update which tracks. In many approaches, a given plot can only be used to update one track. However, in other approaches a plot can be used to update several tracks, recognising the uncertainty in knowing to which track the plot belongs.

  9. Continuous-wave radar - Wikipedia

    en.wikipedia.org/wiki/Continuous-wave_radar

    Doppler shift is not always required for detection when FM is used. While early implementations, such as the APN-1 Radar Altimeter of the 1940s, were designed for short ranges, Over The Horizon Radars (OTHR) such as the Jindalee Operational Radar Network (JORN) are designed to survey intercontinental distances of some thousands of kilometres.