enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) for a full period centered at the origin. The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations.

  3. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.

  4. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  5. Order of approximation - Wikipedia

    en.wikipedia.org/wiki/Order_of_approximation

    For example, if a quantity is constant within the whole interval, approximating it with a second-order Taylor series will not increase the accuracy. In the case of a smooth function , the n th-order approximation is a polynomial of degree n , which is obtained by truncating the Taylor series to this degree.

  6. Linearization - Wikipedia

    en.wikipedia.org/wiki/Linearization

    Linearizations of a function are lines—usually lines that can be used for purposes of calculation. Linearization is an effective method for approximating the output of a function = at any = based on the value and slope of the function at =, given that () is differentiable on [,] (or [,]) and that is close to .

  7. Function approximation - Wikipedia

    en.wikipedia.org/wiki/Function_approximation

    Several progressively more accurate approximations of the step function. An asymmetrical Gaussian function fit to a noisy curve using regression.. In general, a function approximation problem asks us to select a function among a well-defined class [citation needed] [clarification needed] that closely matches ("approximates") a target function [citation needed] in a task-specific way.

  8. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.

  9. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...