enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    where M k are the components of the applied torques, I k are the principal moments of inertia and ω k are the components of the angular velocity. In the absence of applied torques, one obtains the Euler top. When the torques are due to gravity, there are special cases when the motion of the top is integrable.

  3. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Angular momenta of a classical object. Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point, right: extrinsic orbital angular momentum L about an axis, top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω) [6] bottom: momentum p and its radial position r ...

  4. Angular mechanics - Wikipedia

    en.wikipedia.org/wiki/Angular_mechanics

    Many toys are made with angular mechanics in mind. These toys include gyroscopes, tops, and yo-yos. When you spin a toy, you apply force to both sides [3] (Push and pull respectively). This makes the top spin. According to newtons third law of motion, [3] the top would continue to spin until a force is acted upon it. Because of all of the ...

  5. Balance of angular momentum - Wikipedia

    en.wikipedia.org/wiki/Balance_of_angular_momentum

    The balance of angular momentum or Euler's second law in classical mechanics is a law of physics, stating that to alter the angular momentum of a body a torque must be applied to it. An example of use is the playground merry-go-round in the picture. To put it in rotation it must be pushed.

  6. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 [13] 20 examples of periodic solutions to the three-body problem. In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family. In this ...

  7. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Euler's three-body problem - Wikipedia

    en.wikipedia.org/wiki/Euler's_three-body_problem

    The problem of two fixed centers conserves energy; in other words, the total energy is a constant of motion.The potential energy is given by =where represents the particle's position, and and are the distances between the particle and the centers of force; and are constants that measure the strength of the first and second forces, respectively.