Search results
Results from the WOW.Com Content Network
Least trimmed squares (LTS), or least trimmed sum of squares, is a robust statistical method that fits a function to a set of data whilst not being unduly affected by the presence of outliers [1]. It is one of a number of methods for robust regression .
The general regression model with n observations and k explanators, the first of which is a constant unit vector whose coefficient is the regression intercept, is = + where y is an n × 1 vector of dependent variable observations, each column of the n × k matrix X is a vector of observations on one of the k explanators, is a k × 1 vector of true coefficients, and e is an n× 1 vector of the ...
The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...
If a vector of predictions is generated from a sample of data points on all variables, and is the vector of observed values of the variable being predicted, with ^ being the predicted values (e.g. as from a least-squares fit), then the within-sample MSE of the predictor is computed as
To have a lack-of-fit sum of squares that differs from the residual sum of squares, one must observe more than one y-value for each of one or more of the x-values. One then partitions the "sum of squares due to error", i.e., the sum of squares of residuals, into two components:
Its square root is called regression standard error, [4] ... where the chi-squared is a weighted sum of squared deviations: = with inputs: ... Cookie statement;
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
If the sum of squares were not normalized, its value would always be larger for the sample of 100 people than for the sample of 20 people. To scale the sum of squares, we divide it by the degrees of freedom, i.e., calculate the sum of squares per degree of freedom, or variance. Standard deviation, in turn, is the square root of the variance.