enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    The concave equilateral dodecahedron, called an endo-dodecahedron. [clarification needed] A cube can be divided into a pyritohedron by bisecting all the edges, and faces in alternate directions. A regular dodecahedron is an intermediate case with equal edge lengths. A rhombic dodecahedron is a degenerate case with the 6 crossedges reduced to ...

  3. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The icosahedron has the largest number of faces and the largest dihedral angle, it hugs its inscribed sphere the most tightly, and its surface area to volume ratio is closest to that of a sphere of the same size (i.e. either the same surface area or the same volume). The dodecahedron, on the other hand, has the smallest angular defect, the ...

  4. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular dodecahedron can be found in many popular cultures: Roman dodecahedron, the children's story, toys, and painting arts. It can also be found in nature and supramolecules, as well as the shape of the universe. The skeleton of a regular dodecahedron can be represented as the graph called the dodecahedral graph, a Platonic graph.

  5. Elongated dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Elongated_dodecahedron

    3D model of a elongated dodecahedron. In geometry, the elongated dodecahedron, [1] extended rhombic dodecahedron, rhombo-hexagonal dodecahedron [2] or hexarhombic dodecahedron [3] is a convex dodecahedron with 8 rhombic and 4 hexagonal faces. The hexagons can be made equilateral, or regular depending on the shape of the rhombi.

  6. Icosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Icosidodecahedron

    The polygonal faces that meet for every vertex are two equilateral triangles and two regular pentagons, and the vertex figure of an icosidodecahedron is {{nowrap|(3·5) 2 = 3 2 ·5 2}. Its dual polyhedron is rhombic triacontahedron , a Catalan solid .

  7. Cuboctahedron - Wikipedia

    en.wikipedia.org/wiki/Cuboctahedron

    The volume of a cuboctahedron can be determined by slicing it off into two regular triangular cupolas, summing up their volume. Given that the edge length a {\displaystyle a} , its surface area and volume are: [ 5 ] A = ( 6 + 2 3 ) a 2 ≈ 9.464 a 2 V = 5 2 3 a 3 ≈ 2.357 a 3 . {\displaystyle {\begin{aligned}A&=\left(6+2{\sqrt {3}}\right)a^{2 ...

  8. Snub dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Snub_dodecahedron

    In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces. The snub dodecahedron has 92 faces (the most of the 13 Archimedean solids): 12 are pentagons and the other 80 are equilateral triangles. It also ...

  9. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    For example, the icosahedron is {3,5+} 1,0, and pentakis dodecahedron, {3,5+} 1,1 is seen as a regular dodecahedron with pentagonal faces divided into 5 triangles. The primary face of the subdivision is called a principal polyhedral triangle (PPT) or the breakdown structure. Calculating a single PPT allows the entire figure to be created.