enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Real-root isolation - Wikipedia

    en.wikipedia.org/wiki/Real-root_isolation

    The first complete root-isolation procedure results of Sturm's theorem (1829), which expresses the number of real roots in an interval in terms of the number of sign variations of the values of a sequence of polynomials, called Sturm's sequence, at the ends of the interval.

  3. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...

  4. Vincent's theorem - Wikipedia

    en.wikipedia.org/wiki/Vincent's_theorem

    To isolate its positive roots, associate with p(x) the Möbius transformation M(x) = x and repeat the following steps while there are pairs {p(x), M(x)} to be processed. Use Descartes' rule of signs on p ( x ) to compute, if possible, (using the number var of sign variations in the sequence of its coefficients) the number of its roots inside ...

  5. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    The logarithmic derivative is then / and one can draw the general conclusion that for f meromorphic, the singularities of the logarithmic derivative of f are all simple poles, with residue n from a zero of order n, residue −n from a pole of order n. See argument principle. This information is often exploited in contour integration.

  6. Logarithmic decrement - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_decrement

    The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.

  7. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents. For example, the equation log 10 53 = 1.724276… means that 10 1.724276… = 53.

  8. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    As a consequence, log b (x) diverges to infinity (gets bigger than any given number) if x grows to infinity, provided that b is greater than one. In that case, log b (x) is an increasing function. For b < 1, log b (x) tends to minus infinity instead. When x approaches zero, log b x goes to minus infinity for b > 1 (plus infinity for b < 1 ...

  9. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.