enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    The word "factorial" (originally French: factorielle) was first used in 1800 by Louis François Antoine Arbogast, [18] in the first work on Faà di Bruno's formula, [19] but referring to a more general concept of products of arithmetic progressions. The "factors" that this name refers to are the terms of the product formula for the factorial. [20]

  3. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,

  4. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The falling factorial can be extended to real values of using the gamma function provided and + are real numbers that are not negative integers: = (+) (+) , and so can the rising factorial: = (+) . Calculus

  5. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    A more efficient method to compute individual binomial coefficients is given by the formula = _! = () (()) () = = +, where the numerator of the first fraction, _, is a falling factorial. This formula is easiest to understand for the combinatorial interpretation of binomial coefficients.

  6. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    "Stirling_formula", Encyclopedia of Mathematics, EMS Press, 2001 [1994] Peter Luschny, Approximation formulas for the factorial function n! Weisstein, Eric W., "Stirling's Approximation", MathWorld; Stirling's approximation at PlanetMath

  7. Superfactorial - Wikipedia

    en.wikipedia.org/wiki/Superfactorial

    This may be expressed as stating that, in the formula for () as a product of factorials, omitting one of the factorials (the middle one, ()!) results in a square product. [4] Additionally, if any n + 1 {\displaystyle n+1} integers are given, the product of their pairwise differences is always a multiple of s f ( n ) {\displaystyle {\mathit {sf ...

  8. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    1. Factorial: if n is a positive integer, n! is the product of the first n positive integers, and is read as "n factorial". 2. Double factorial: if n is a positive integer, n!! is the product of all positive integers up to n with the same parity as n, and is read as "the double factorial of n". 3.

  9. Stirling numbers of the first kind - Wikipedia

    en.wikipedia.org/wiki/Stirling_numbers_of_the...

    In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the unsigned Stirling numbers of the first kind count permutations according to their number of cycles (counting fixed points as cycles of length one).