Search results
Results from the WOW.Com Content Network
The relational calculus is similar to the relational algebra, which is also part of the relational model: While the relational calculus is meant as a declarative language that prescribes no execution order on the subexpressions of a relational calculus expression, the relational algebra is meant as an imperative language: the sub-expressions of ...
Since the calculus is a query language for relational databases we first have to define a relational database. The basic relational building block is the domain (somewhat similar, but not equal to, a data type). A tuple is a finite sequence of attributes, which are ordered pairs of domains and values. A relation is a set of (compatible) tuples ...
This language uses the same operators as tuple calculus, the logical connectives ∧ (and), ∨ (or) and ¬ (not). The existential quantifier (∃) and the universal quantifier (∀) can be used to bind the variables. Its computational expressiveness is equivalent to that of relational algebra. [2]
Codd's theorem states that relational algebra and the domain-independent relational calculus queries, two well-known foundational query languages for the relational model, are precisely equivalent in expressive power. That is, a database query can be formulated in one language if and only if it can be expressed in the other.
Modelling of Concurrent Systems: Structural and Semantical Methods in the High Level Petri Net Calculus. Herbert Utz Verlag. ISBN 978-3-89675-629-9. Rosenstein, Joseph G. (1982), Linear orderings, Academic Press, ISBN 0-12-597680-1; Schmidt, Gunther (2010). Relational Mathematics. Cambridge: Cambridge University Press. ISBN 978-0-521-76268-7.
A view can be defined by an expression using the operators of the relational algebra or the relational calculus. Such an expression operates on one or more relations and when evaluated yields another relation. The result is sometimes referred to as a "derived" relation when the operands are relations assigned to database variables.
First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables.
Queries made against the relational database, and the derived relvars in the database are expressed in a relational calculus or a relational algebra. In his original relational algebra, Codd introduced eight relational operators in two groups of four operators each. The first four operators were based on the traditional mathematical set operations: