Search results
Results from the WOW.Com Content Network
The kilocalorie per mole is a unit to measure an amount of energy per number of molecules, atoms, or other similar particles. It is defined as one kilocalorie of energy (1000 thermochemical gram calories) per one mole of substance. The unit symbol is written kcal/mol or kcal⋅mol −1. As typically measured, one kcal/mol represents a ...
The precise equivalence between calories and joules has varied over the years, but in thermochemistry and nutrition it is now generally assumed that one (small) calorie (thermochemical calorie) is equal to exactly 4.184 J, and therefore one kilocalorie (one large calorie) is 4184 J or 4.184 kJ. [10] [11]
Following is the master list of conversion data used by Module:Convert, ... kilocalorie: kJ: Calorie: kcal-15: kcal 15: 4185.8: kilocalorie (15°C) kilocalories (15 ...
The "grand calorie" (also "kilocalorie", "kilogram-calorie", or "food calorie"; "kcal" or "Cal") is 1000 small calories, that is, 4184 J, exactly. When heat is measured in these units, the unit of specific heat is usually 1 cal/(°C⋅mol) ("small calorie") = 4.184 J⋅K −1 ⋅mol −1 1 kcal/(°C⋅mol) ("large calorie") = 4184 J⋅K −1 ...
Energy density is the amount of energy per mass or volume of food. The energy density of a food can be determined from the label by dividing the energy per serving (usually in kilojoules or food calories) by the serving size (usually in grams, milliliters or fluid ounces).
Other units sometimes used to describe reaction energetics are kilocalories per mole (kcal·mol −1), electron volts per particle (eV), and wavenumbers in inverse centimeters (cm −1). 1 kJ·mol −1 is approximately equal to 1.04 × 10 −2 eV per particle, 0.239 kcal·mol −1, or 83.6 cm −1.
Energy; system unit code (alternative) symbol or abbrev. notes sample default conversion combinations SI: yottajoule: YJ YJ 1.0 YJ (2.8 × 10 17 kWh) zettajoule: ZJ ZJ 1.0 ZJ (2.8 × 10 14 kWh)
1 kJ/mol, converted to energy per molecule [9] 2.1×10 −21 J Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV) [10] 2.856×10 −21 J By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information 3–7×10 −21 J