enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Allowable Strength Design - Wikipedia

    en.wikipedia.org/wiki/Allowable_Strength_Design

    Ultimate strength of an element or member is determined in the same manner regardless of the load combination method considered (e.g. ASD or LRFD). Design load combination effects are determined in a manner appropriate to the intended form of the analysis results. ASD load combinations are compared to the ultimate strength reduced by a factor ...

  3. Structural load - Wikipedia

    en.wikipedia.org/wiki/Structural_load

    These load factors are, roughly, a ratio of the theoretical design strength to the maximum load expected in service. They are developed to help achieve the desired level of reliability of a structure [ 6 ] based on probabilistic studies that take into account the load's originating cause, recurrence, distribution, and static or dynamic nature.

  4. Limit state design - Wikipedia

    en.wikipedia.org/wiki/Limit_state_design

    Limit State Design (LSD), also known as Load And Resistance Factor Design (LRFD), refers to a design method used in structural engineering. A limit state is a condition of a structure beyond which it no longer fulfills the relevant design criteria. [ 1 ]

  5. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    A load case is a combination of different types of loads with safety factors applied to them. A structure is checked for strength and serviceability against all the load cases it is likely to experience during its lifetime. Typical load cases for design for strength (ultimate load cases; ULS) are: 1.2 x Dead Load + 1.6 x Live Load

  6. Factor of safety - Wikipedia

    en.wikipedia.org/wiki/Factor_of_safety

    If there is a part with a required design factor of 3 and a margin of 1, the part would have a safety factor of 6 (capable of supporting two loads equal to its design factor of 3, supporting six times the design load before failure). A margin of 0 would mean the part would pass with a safety factor of 3.

  7. Peak ground acceleration - Wikipedia

    en.wikipedia.org/wiki/Peak_ground_acceleration

    Peak ground acceleration can be expressed in fractions of g (the standard acceleration due to Earth's gravity, equivalent to g-force) as either a decimal or percentage; in m/s 2 (1 g = 9.81 m/s 2); [7] or in multiples of Gal, where 1 Gal is equal to 0.01 m/s 2 (1 g = 981 Gal).

  8. Design load - Wikipedia

    en.wikipedia.org/wiki/Design_load

    A crane's rated load is its Safe Working Load (SWL) and the design load (DL) is, (p 90) [1] = The dynamic lift factor for offshore cranes in the range 10 kN < SWL ≤ 2500 kN is not less than =.(p 84) [1] Thus for a crane with a SWL of 2000 kN (~200 tonne) its design load is not less than, = = The minimum breaking load (MBL) for the combined capacity of reeves of a steel wire hoisting rope ...

  9. Soil-structure interaction - Wikipedia

    en.wikipedia.org/wiki/Soil-structure_interaction

    The same idea also forms the basis of the current common seismic design codes such as ASCE 7-10 and ASCE 7-16. Although the mentioned idea, i.e. reduction in the base shear, works well for linear soil-structure systems, it is shown that it cannot appropriately capture the effect of SSI on yielding systems. [7]