Search results
Results from the WOW.Com Content Network
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution , and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters .
In statistics, a fixed-effect Poisson model is a Poisson regression model used for static panel data when the outcome variable is count data. Hausman, Hall, and Griliches pioneered the method in the mid 1980s.
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
Poisson regression for contingency tables, a type of generalized linear model. The specific applications of log-linear models are where the output quantity lies in the range 0 to ∞, for values of the independent variables X, or more immediately, the transformed quantities f i (X) in the range −∞ to +∞.
Examples of variance-stabilizing transformations are the Fisher transformation for the sample correlation coefficient, the square root transformation or Anscombe transform for Poisson data (count data), the Box–Cox transformation for regression analysis, and the arcsine square root transformation or angular transformation for proportions ...
Hilbe [3] notes that "Poisson regression is traditionally conceived of as the basic count model upon which a variety of other count models are based." In a Poisson model, "… the random variable y {\displaystyle y} is the count response and parameter λ {\displaystyle \lambda } (lambda) is the mean.
Commonly used models in the GLM family include binary logistic regression [5] for binary or dichotomous outcomes, Poisson regression [6] for count outcomes, and linear regression for continuous, normally distributed outcomes. This means that GLM may be spoken of as a general family of statistical models or as specific models for specific ...
There is no simple formula for the entropy of a Poisson binomial distribution, but the entropy is bounded above by the entropy of a binomial distribution with the same number parameter and the same mean. Therefore, the entropy is also bounded above by the entropy of a Poisson distribution with the same mean. [7]