Search results
Results from the WOW.Com Content Network
Most aliphatic compounds are flammable, allowing the use of hydrocarbons as fuel, such as methane in natural gas for stoves or heating; butane in torches and lighters; various aliphatic (as well as aromatic) hydrocarbons in liquid transportation fuels like petrol/gasoline, diesel, and jet fuel; and other uses such as ethyne (acetylene) in welding.
2,4,6-Trichloro-1,3,5-triazine is easily hydrolyzed to cyanuric acid by heating with water. 2,4,6-Tris(phenoxy)-1,3,5-triazine results when the trichloride is treated with phenol. With amines, one or more chloride is displaced. The remaining chlorides are reactive, and this theme is the basis of the large field of reactive dyes.
Schiff bases are common enzymatic intermediates where an amine, such as the terminal group of a lysine residue, reversibly reacts with an aldehyde or ketone of a cofactor or substrate. The common enzyme cofactor pyridoxal phosphate (PLP) forms a Schiff base with a lysine residue and is transaldiminated to the substrate(s). [ 7 ]
Amine. In chemistry, amines (/ ə ˈ m iː n, ˈ æ m iː n /, [1] [2] UK also / ˈ eɪ m iː n / [3]) are compounds and functional groups that contain a basic nitrogen atom with a lone pair.Formally, amines are derivatives of ammonia (NH 3 (in which the bond angle between the nitrogen and hydrogen is 170°), wherein one or more hydrogen atoms have been replaced by a substituent such as an ...
The acidity of the hydroxyl group in phenols is commonly intermediate between that of aliphatic alcohols and carboxylic acids (their pK a is usually between 10 and 12). Deprotonation of a phenol forms a corresponding negative phenolate ion or phenoxide ion , and the corresponding salts are called phenolates or phenoxides ( aryloxides according ...
In organic chemistry, an aromatic amine is an organic compound consisting of an aromatic ring attached to an amine. It is a broad class of compounds that encompasses anilines, but also many more complex aromatic rings and many amine substituents beyond NH 2. Such compounds occur widely. [1]
Nucleophilic substitution reactions between halocarbons [5] or organosulfates [6] with silver or alkali nitrite salts. Nitromethane can be produced in the laboratory by treating sodium chloroacetate with sodium nitrite. [7] Oxidation of oximes [8] or primary amines. [9] Reduction of β-nitro alcohols [10] or nitroalkenes. [11]
Nonetheless, molecular ion peaks are weak in aliphatic amines due to the ease of fragmentation next to amines. Alpha-cleavage reactions are the most important fragmentation mode for amines; for 1° n-aliphatic amines, there is an intense peak at m/z 30. [11] [6] Alpha cleavage of amines. Aromatic amines have intense molecular ion peaks.