Search results
Results from the WOW.Com Content Network
Each photon packet will repeatedly undergo the following numbered steps until it is either terminated, reflected, or transmitted. The process is diagrammed in the schematic to the right. Any number of photon packets can be launched and modeled, until the resulting simulated measurements have the desired signal-to-noise ratio.
The ultimate fate of this energy depends on the context. It could be immediately re-radiated and appear as scattered, reflected, or transmitted radiation. It may get dissipated into other microscopic motions within the matter, coming to thermal equilibrium and manifesting itself as thermal energy, or even kinetic energy, in the
The process inverse to particle annihilation can be called matter creation; more precisely, we are considering here the process obtained under time reversal of the annihilation process. This process is also known as pair production , and can be described as the conversion of light particles (i.e., photons) into one or more massive particles .
Because a low-frequency beam at a high intensity does not build up the energy required to produce photoelectrons, as would be the case if light's energy accumulated over time from a continuous wave, Albert Einstein proposed that a beam of light is not a wave propagating through space, but a swarm of discrete energy packets, known as photons ...
The Consultative Committee for Space Data Systems packet telemetry standard defines the protocol used for the transmission of spacecraft instrument data over the deep-space channel. Under this standard, an image or other data sent from a spacecraft instrument is transmitted using one or more packets.
A packet is a block of data with length that can vary between successive packets, ranging from 7 to 65,542 bytes, including the packet header. Packetized data is transmitted via frames, which are fixed-length data blocks. The size of a frame, including frame header and control information, can range up to 2048 bytes.
In an antenna transmitting radio waves, the electrons in the antenna emit the energy in discrete packets called radio photons, while in a receiving antenna the electrons absorb the energy as radio photons. An antenna is a coherent emitter of photons, like a laser, so the radio photons are all in phase.
The "time" axis gives the angular frequency (rad⋅s −1) and the "space" axis represents the angular wavenumber (rad⋅m −1). Green and indigo represent left and right polarization. In empty space, the photon moves at c (the speed of light) and its energy and momentum are related by E = pc, where p is the magnitude of the momentum vector p.