Search results
Results from the WOW.Com Content Network
The derivatives in the table above are for when the range of the inverse secant is [,] and when the range of the inverse cosecant is [,]. It is common to additionally define an inverse tangent function with two arguments , arctan ( y , x ) . {\displaystyle \arctan(y,x).}
In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.
In Lagrange's notation, the symbol for a derivative is an apostrophe-like mark called a prime. Thus, the derivative of a function called f is denoted by f′, pronounced "f prime" or "f dash". For instance, if f(x) = x 2 is the squaring function, then f′(x) = 2x is its derivative (the doubling function g from above).
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
[2] [3] [4] The table below is intended to assist people working with the alternative calculus called the "geometric calculus" (or its discrete analog). Interested readers are encouraged to improve the table by inserting citations for verification, and by inserting more functions and more calculi.
for the first derivative, for the second derivative, for the third derivative, and for the nth derivative. When f is a function of several variables, it is common to use "∂", a stylized cursive lower-case d, rather than "D". As above, the subscripts denote the derivatives that are being taken.
If the derivative f vanishes at p, then f − f(p) belongs to the square I p 2 of this ideal. Hence the derivative of f at p may be captured by the equivalence class [f − f(p)] in the quotient space I p /I p 2, and the 1-jet of f (which encodes its value and its first derivative) is the equivalence class of f in the space of all functions ...
In calculus, the reciprocal rule gives the derivative of the reciprocal of a function f in terms of the derivative of f.The reciprocal rule can be used to show that the power rule holds for negative exponents if it has already been established for positive exponents.