Search results
Results from the WOW.Com Content Network
[1] [2] For example, the Gibbs free energy of a compound in the area of thermochemistry is often quantified in units of kilojoules per mole (symbol: kJ·mol −1 or kJ/mol), with 1 kilojoule = 1000 joules. [3] Physical quantities measured in J·mol −1 usually describe quantities of energy transferred during phase transformations or chemical ...
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:
The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1. (for predictions) Cotton, Simon (2006). Lanthanide and Actinide Chemistry. John Wiley & Sons Ltd. Fricke, Burkhard (1975). "Superheavy elements: a prediction of their chemical and physical properties".
In the Arrhenius model of reaction rates, activation energy is the minimum amount of energy that must be available to reactants for a chemical reaction to occur. [1] The activation energy (E a) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [2]
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
Bond dissociation energy for the carbon monoxide (CO) triple bond, alternatively stated: 1072 kJ/mol; 11.11eV per molecule. [21] This is the strongest chemical bond known. 2.18×10 −18 J: Ground state ionization energy of hydrogen (13.6 eV) 10 −17 2–2000×10 −17 J Energy range of X-ray photons [8] 10 −16 10 −15: femto-(fJ) 3 × 10 ...
Some chemistry textbooks [3] as well as the widely used CRC Handbook of Chemistry and Physics [4] define lattice energy with the opposite sign, i.e. as the energy required to convert the crystal into infinitely separated gaseous ions in vacuum, an endothermic process. Following this convention, the lattice energy of NaCl would be +786 kJ/mol.
In SI units, one kilocalorie per mole is equal to 4.184 kilojoules per mole (kJ/mol), which comes to approximately 6.9477 × 10 −21 joules per molecule, or about 0.043 eV per molecule. At room temperature (25 °C, 77 °F, or 298.15 K), one kilocalorie per mole is approximately equal to 1.688 kT per molecule.